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The recent advances in alternating direct implicit (ADI) methods promise important new
capability for time domain plasma simulations, namely the elimination of numerical stabil-
ity limits on the time step. But the utility of these methods in simulations with charge and
current sources, such as in electromagnetic particle-in-cell (EMPIC) computations, has
been uncertain, as the methods introduced so far do not have the property of divergence
preservation. This property is related to charge conservation and self-consistency, and is
critical for accurate and robust EMPIC simulation. This paper contains a complete study
of these ADI methods in the presence of charge and current sources. It is shown that there
are four significantly distinct cases, with four more related by duality. Of those, only one
preserves divergence and, thus, is guaranteed to be stable in the presence of moving
charged particles. Computational verification of this property is accomplished by imple-
mentation in existing 3D-EMPIC simulation software. Of the other three cases, two are
verified unstable, as expected, and one remains stable, despite the lack of divergence pres-
ervation. This other stable algorithm is shown to be related to the divergence preserving
case by a similarity transformation, effectively providing the complement of the divergence
preserving field in the finite-difference energy quantity.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Electromagnetic simulations of plasma can be made more robust with the use of implicit solvers, since these permit use of
time step consistent with the phenomena of interest, rather than the fastest time-scale of the plasma, e.g., the plasma fre-
quency, or speed-of-light Courant limit. An interesting class of those solvers is that of so-called alternating direction implicit
(ADI) solvers, of which one example was introduced in [1] and further analysis was presented in [2]. These solvers are found
by separating the time development operator (curl acting on E and B) for Maxwell’s equations into two parts. In each part,
the derivative in any one direction (say x) acts on only one of the pairs (say Ey and Bz) of the combined six components of the
electric and magnetic fields. This allows one to develop a full update through Strang [3] splitting, which, upon repetitive
application, alternates the updates of each of the operator parts separately. Furthermore, the simplicity of each part allows
fully implicit updates with the requirement of only one-dimensional, tridiagonal solves, which can be rapidly effected
through the Thomas algorithm [4].
. All rights reserved.
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In this paper we investigate how these methods might be combined with self-consistent charges and current, with the
particular example being electromagnetic particle-in-cell (EMPIC) methods [5,6]. For such situations, the importance of
charge conservation has been noted. A charge conserving current deposition algorithm has the property that integration
of the finite-difference continuity equation, Dq = �rFD�jDt (q is the charge density, j is the current density, and rFD is
the finite-difference form of the divergence operator), gives a charge density that is consistent with the charge density of
the locations of the particles in the simulations. Such a current deposition algorithm was developed by Villaseñor and Bun-
eman [7] and later in [8] for smoother particles. As demonstrated in [9], failure to have a charge conserving current depo-
sition algorithm can lead to nonphysical divergence build-up in the electric field that ultimately leads to catastrophic failure
of the simulation.

The second issue, which is dealt with in this paper, is whether the electromagnetic update algorithm preserves this
divergence of the current. Should indeed this be the case, then one has the highly desirable property that, if rFD�B = 0
and rFD�E = q/e0 at one time step, then these remain true, to machine precision, after application of the update operator,
to the next time step. Stated another way, for the magnetic update, the requirement is that a divergence-less field, upon
update, leads to a divergence-less field. For the electric update, the associated condition is that, given a conservative
charge deposition scheme, Gauss’s Law, rFD�DE = �rFD�jDt/e0, remains valid, to machine precision, after application
of the update operator, without the need for any additional divergence cleaning step. Such divergence preservation is
indeed the case for Yee [10] update and for a Crank–Nicholson update as well, but it is not a priori clear for the ADI
updates.

In this paper, we perform the splitting of the curl operator in Maxwell’s equations into two parts, denoted M and P, lead-
ing to the four fundamental operators of ADI algorithms, which we denote as 1þ Dt

2 M
� �

; 1þ Dt
2 P

� �
; 1� Dt

2 M
� ��1 and

1� Dt
2 P

� ��1. The first two operators are explicit, and the second two are implicit, since they are inverses. An ADI algorithm
uses all four of these operators to construct the full update sequence. There are 24 = 4! possible combinations of the four
operators. Of these 24, 12 are equivalent to each other by simple duality, that is, interchange of M and P. Of the remaining
12 combinations, four are not transformable to Strang splitting, because successive alternation between M and P operators
prevents construction of unitary operators. Finally, of the remaining eight combinations, only four are time reversible, which
is an important property of the Maxwell update and assures a minimum of second-order accuracy. Of those four combina-
tions, one arises naturally from that introduced by Zheng et al. [1] but does not preserve divergence. Of the other three com-
binations, only one is found to be divergence preserving. Strikingly, this one divergence preserving ADI composition has not
been previously identified or studied. Finally, the remaining two compositions are related to the previous two by similarity
transformation, and as previously indicated, are not divergence preserving.

We then proceed to examine the consequences of using any of these updates in EMPIC, having implemented them in the
VORPAL [11] computational application. We show that, like the previous results of [9] for charge non-conservation, the lack
of divergence preservation in two of the algorithms, including the one most closely related to that of [1], leads to catastrophic
failure of the associated ADI-EMPIC simulations. We show that the new, divergence preserving algorithm does not have this
catastrophic failure. Nor does the algorithm related to it by a similarity transformation.

These results can be applied to ADI algorithms in simulations of many phenomena for which one would like to use
EMPIC, but for which the Courant limit is constraining. One example comes from the requirement to resolve the plasma
Debye length in order to avoid self-heating [12]. This requirement in an explicit EM simulation then leads to a Courant
time step that is Dt � kD/c. However, if light waves are not important, one really needs a time step that can be much lar-
ger, of order the time for a thermal electron to cross a cell, or Dt � kD/ve, where ve is the electron thermal speed. Thus, use
of explicit methods, as might be needed to capture magnetic effects, requires a much smaller time step and, hence, much
greater computational effort. Another common situation involves the propagation of a bunched, or otherwise spatially
varying charge profile beam through a tube or cavity. The beam ultimately comes to equilibrium, with its self electric
and magnetic forces in balance with any external fields and the beam divergence. Now the time-scale is very long, as
one is computing an equilibrium, so the Courant stability condition is even more restrictive. In general, the Courant con-
dition is constraining whenever one is dealing with systems where one must keep magnetic effects yet light waves are not
important to the dynamics.

The organization of this paper is as follows. In the following section we review the ADI-EM algorithms and derive the four
fundamental operators from which all possible update operators can be assembled. We then show, in Section 3, using time-
reversal arguments, that there are two possible second-order update operators for vacuum electromagnetics, and even those
are related by a similarity transformation. In Section 4, we introduce current sources. This breaks the equivalence, so that
there are four update operators, consisting of two pairs, with each in a pair related to the other by a similarity transforma-
tion. We show that only one of the four operators is divergence preserving. In Section 5 we present numerical results for ADI-
EMPIC. These results show that only the divergence preserving operator and its relative by similarity are stable; the other
two algorithms lead to catastrophic failure in ADI-EMPIC simulations. In Section 6 we derive the steady-state solution for
these two operators and show that the one similar to the divergence preserving update operator has the usual finite-differ-
enced steady-state Maxwell equations. In Section 7 we derive an energy invariant for the divergence preserving operator and
its relative by similarity, and we show how its energy differs from the standard divergence preservation of FDTD EM. In Sec-
tion 8 we discuss the use of these algorithms in conjunction with complex boundaries. The last section contains a summary
and some conclusions.
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2. ADI-EM algorithms

The ADI algorithms derive from the fact that Maxwell’s equations,
@B
@t
¼ �r� E ð1aÞ
and
@E
@t
¼ � j

e0
þ c2r� B; ð1bÞ
can be written in the form,
@ eV
@t
¼ eS þ ðeP þfMÞ � eV; ð2Þ
where eV is the six-component field, ðE; cBÞ; eS is the six-component field (�j/e0,0), and the operators eP and fM are defined by
eP � eV ¼ eP �
Ex

Ey

Ez

cBx

cBy

cBz

2666666664

3777777775
� c

@cBz=@y

@cBx=@z

@cBy=@x

@Ey=@z

@Ez=@x

@Ex=@y

2666666664

3777777775
and fM � eV �fM �

Ex

Ey

Ez

cBx

cBy

cBz

2666666664

3777777775
� �c

@cBy=@z

@cBz=@x

@cBx=@y
@Ez=@y

@Ex=@z

@Ey=@x

2666666664

3777777775
: ð3Þ
The mnemonic is that the operator eP has a plus sign on the right, while the operator fM has the minus sign. As can be seen,
the interchange of eP andfM operators is equivalent to an interchange of E and cB, together with sign (parity) exchange. In the
remainder of this paper we will assume what might be called an ‘‘M-first” choice of ADI duality, and simply state here that
the analysis proceeds identically under the interchange of P and M operators.

For numerical differencing, the Yee layout of the fields is assumed. In this layout, the electric fields are centered at the
edges of a cell (indexed by i,j,k), while the magnetic fields are centered at the faces of the cell. We adopt the following nota-
tion to indicate the transition from field representation to discrete spatial representation: the previous tilde quantities are
fields and calculus–operators, whereas without the tildes, the quantities are arrays and finite-differencing matrices. Thus,
the finite-difference forms of the above operators are
P � V � c

cðBz;i;j;k � Bz;i;j�1;kÞ=Dy

cðBx;i;j;k � Bx;i;j;k�1Þ=Dz

cðBy;i;j;k � By;i�1;j;kÞ=Dx

ðEy;i;j;kþ1 � Ey;i;j;kÞ=Dz

ðEz;iþ1;j;k � Ez;i;j;kÞ=Dx

ðEx;i;jþ1;k � Ex;i;j;kÞ=Dy

2666666664

3777777775
and M � V � �c

cðBy;i;j;k � By;i;j;k�1Þ=Dz

cðBz;i;j;k � Bz;i�1;j;kÞ=Dx

cðBx;i;j;k � Bx;i;j�1;kÞ=Dy

ðEz;i;jþ1;k � Ez;i;j;kÞ=Dy

ðEx;i;j;kþ1 � Ex;i;j;kÞ=Dz

ðEy;iþ1;j;k � Ey;i;j;kÞ=Dx

2666666664

3777777775
; ð4Þ
where now V is the full array of all values for all components and all cells, and P and M are linear operators on that space.
Thus, the finite-differenced Maxwell equations, in the absence of sources, are
@V
@t
¼ ðPþMÞ � V ð5Þ
An important property of the discretized Maxwell system of equations is that the matrix operators are anti-symmetric, that
is, M = �MT and P = �PT, where the superscript ‘T’ denotes transpose.

With Strang splitting, we break the above equation into two, and we solve each one separately, giving two advance oper-
ators. If each operator is found to second-order accuracy (third-order error), the full update can be found by application of
the square root of the first operator followed by the second operator and then the square root of the first operator. More
definitively, we first consider the equation,
@X
@t
¼ P � X ð6Þ
which becomes
Xnþ1 � Xn ¼ Dt
2

P � ðXnþ1 þ XnÞ ð7Þ
upon second-order time-centered finite differencing, at discrete time steps, tn = nDt using the usual time-superscript nota-
tion, Xn � X(tn). The update solution of this equation is, of course,



7292 D.N. Smithe et al. / Journal of Computational Physics 228 (2009) 7289–7299
Xnþ1 ¼ Tp � Xn � 1� Dt
2

P
� ��1

� 1þ Dt
2

P
� �

� Xn; ð8Þ
thus defining the unitary second-order accurate time-advance matrix operator, TP, based upon the original P operator.
Similarly,
TM � 1� Dt
2

M
� ��1

� 1þ Dt
2

M
� �

ð9Þ
gives the second-order accurate time-advance based upon the M operator. The unitary property of these matrix–operators,
that is, TT

PTP ¼ 1 and similarly for TM, is a result of the anti-symmetric property of the original P and M matrix–operators, and
the commutability of the matrix factors, 1þ Dt

2 M
� ��1 and 1� Dt

2 M
� �

, and analogously for P. Consequently, following Strang
splitting, the composite operator,
TStrang � T1=2
M TPT1=2

M ; ð10Þ
is also second-order accurate.
This is not the update proposed by Zheng et al. [1]. Instead, they proposed the ADI-update operator,
T1 � 1� Dt
2

M
� ��1

� 1þ Dt
2

P
� �

� 1� Dt
2

P
� ��1

� 1þ Dt
2

M
� �

; ð11Þ
which, we show in the next section, is also second-order accurate, although this property was not fully advertised in [1]. The
two operators are related by a similarity transformation.
T1 ¼ 1� Dt2

4
M2

� ��1=2

� TStrang � 1� Dt2

4
M2

� �1=2

: ð12Þ
Thus, the spectrums of the two updates are identical, and the update of one corresponds to the update of the similarity trans-
form applied to the state vector of the other. Lee and Fornberg [2] noted that the operator of [1] could be rewritten,
TGSS � 1� Dt
2

M
� ��1

� 1� Dt
2

P
� ��1

� 1þ Dt
2

P
� �

� 1þ Dt
2

M
� �

; ð13Þ
by virtue of the commutability of the middle two operators in Eq. (11). Application of this operator in an update equation for
V allows the inverses to be taken in turn, producing a traditional ADI algorithm,
Vnþ1 � Vn ¼ Dt
2
ðMþ PÞ � ðVnþ1 þ VnÞ � ðDtÞ2

4
P �M � ðVnþ1 � VnÞ ð14Þ
that differs from the second-order Crank–Nicholson operator by the last term that is O(Dt3). Hence, the update operator (13)
is second-order accurate. The notation adopted for this operator, ‘‘GSS”, refers to ‘‘Gradient Steady-State,” due to the fact that
this update, Eq. (14), allows a steady-state condition, Vn+1 = Vn, whenever Vn is a pure gradient, since the gradient is in the
null-space of the curl operator, (M + P), for Yee-cell finite differencing. This important property will be explored in more de-
tail in Section 6.

3. Second-order accurate ADI operators

Inspired by the results of Lee and Fornberg [2], we approach this from another direction. Namely, we consider any and all
possible operators that can be constructed from a product of each of the four operators appearing in Eq. (11), but we restrict
ourselves to operators that are time reversible. Time reversibility guarantees second-order accuracy, because time reversibil-
ity guarantees that the first non-vanishing term in the power series is third-order in the time difference, just like in the actual
evolution, and so the first possible difference is O(Dt3).

First we must understand how time reversal acts on the operators of Eq. (11). Since time reversal is computing the final
state in terms of the initial, the order of the operators must be reversed, and the inverses interchange with multiplication. For
an operator to be time-reversal symmetric, then its inverse followed by Dt ? �Dt must give the same operator. We see that
the operators (11) and (13) introduced in [1,2] both have time-reversal symmetry and are, therefore, second-order accurate.

We now enumerate the other operators that can be time-reversal symmetric. As noted previously, we restrict ourselves to
one specific choice of the P M M interchange duality, namely that all sequences of the form of Eq. (11) can be taken to begin
with either 1� Dt

2 M
� ��1 or 1þ Dt

2 M
� �

and end with the other corresponding time-reversed operator. Thus, we have the pre-
viously defined update operator from [1], and the operator that results from exchanging its first and last terms,
T1 � 1� Dt
2

M
� ��1

� 1þ Dt
2

P
� �

� 1� Dt
2

P
� ��1

� 1þ Dt
2

M
� �

; ð15aÞ
and
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T2 � 1þ Dt
2

M
� �

� 1þ Dt
2

P
� �

� 1� Dt
2

P
� ��1

� 1� Dt
2

M
� ��1

: ð15bÞ
Each of these two update operators has a corresponding equivalent, in the absence of currents, with the center terms com-
muted, including the previously noted Eq. (13).
TGSS � 1� Dt
2

M
� ��1

� 1� Dt
2

P
� ��1

� 1þ Dt
2

P
� �

� 1þ Dt
2

M
� �

ð15cÞ

TDP � 1þ Dt
2

M
� �

� 1� Dt
2

P
� ��1

� 1þ Dt
2

P
� �

� 1� Dt
2

M
� ��1

ð15dÞ
The notation adopted for this last operator, ‘‘DP”, refers to ‘‘Divergence Preserving.” This previously unheralded update oper-
ator will be the subject of the next section and is indeed the impetus for this study.

These two pairs of operators are related by similarity transformation,
T2 ¼ 1� Dt2

4
M2

� �
� T1 � 1� Dt2

4
M2

� ��1

and TDP ¼ 1� Dt2

4
M2

� �
� TGSS � 1� Dt2

4
M2

� ��1

: ð16Þ
Thus, in the absence of currents, there is only one fundamental second-order accurate vacuum electromagnetics update
operator, with all others related to it by duality, commutability, or similarity transformation. Because the operator appearing
in Eq. (16) arises repeatedly, we denote it as R, and discuss it further. Note that, in the continuous-field representation, fM2 is
a component-wise diagonal operator, which can be represented in derivative and spectral form as,
fM2 � eV ¼ c2

@2Ex=@z2

@2Ey=@x2

@2Ez=@y2

@2cBx=@y2

@2cBy=@z2

@2cBz=@x2

26666666664

37777777775
¼ �c2

k2
z Ex

k2
x Ey

k2
y Ez

k2
y cBx

k2
z cBy

k2
x cBz

2666666666664

3777777777775
; ð17Þ
so that
eR � 1� Dt2

4
fM2 ¼

1þ ~r2
z 0 0 0 0 0

0 1þ ~r2
x 0 0 0 0

0 0 1þ ~r2
y 0 0 0

0 0 0 1þ ~r2
y 0 0

0 0 0 0 1þ ~r2
z 0

0 0 0 0 0 1þ ~r2
x

26666666664

37777777775
; ð18Þ
where for continuum fields, the spectral-form coefficient is
~ri ¼ kicDt=2 ð19Þ
For discrete representation, the matrices, M2 and R are the block tridiagonal matrices based upon the second-derivative finite
differences, and the spectral-form coefficient is
ri ¼
cDt
Dx

sin
kiDxi

2

� �
: ð20Þ
The R matrix is positive definite. For well resolved variations, kiDxi� p and kicDt� 2, it is approximately unity to second-
order, and departs from unity for poorly resolved variations in proportion to the Courant ratio, cDt/Dx. Finally, we note that R
contains only the M operator and not the P operator. Thus, R serves as an indicator of the choice of the ADI duality.
4. Divergence preservation

Divergence preservation becomes an issue when current sources are added into Maxwell’s equations. In EMPIC, the elec-
tric current, j, is usually computed at times halfway between the discrete times at which the electric field is known. Conse-
quently, charge, q, is computed at the same times as the electric field, enabling Gauss’s Law, with its divergence operation, to
be evaluated. For ADI, we would like to continue to add the current in a time-centered manner, and in the simplest way pos-
sible. Thus, let us assume a current source evaluated at the half time step, Sn+1/2. Thus, we look at possible update algorithms
where the current is added once, in the center of the operators (15), e.g.,
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Vnþ1
1 ¼ U1 Vn

1

� �
� 1� Dt

2
M

� ��1

� 1þ Dt
2

P
� �

� 1� Dt
2

P
� ��1

� 1þ Dt
2

M
� �

� Vn
1 þ DtSnþ1=2

" #
; ð21aÞ

Vnþ1
2 ¼ U2 Vn

2

� �
� 1þ Dt

2
M

� �
� 1þ Dt

2
P

� �
� 1� Dt

2
P

� ��1

� 1� Dt
2

M
� ��1

� Vn
2 þ DtSnþ1=2

" #
; ð21bÞ

Vnþ1
GSS ¼ UGSS Vn

GSS

� �
� 1� Dt

2
M

� ��1

� 1� Dt
2

P
� ��1

� 1þ Dt
2

P
� �

� 1þ Dt
2

M
� �

� Vn
GSS þ DtSnþ1=2

� �
; ð21cÞ
and
Vnþ1
DP ¼ UDP Vn

DP

� �
� 1þ Dt

2
M

� �
� 1� Dt

2
P

� ��1

� 1þ Dt
2

P
� �

� 1� Dt
2

M
� ��1

� Vn
DP þ DtSnþ1=2

" #
: ð21dÞ
With this introduction of a current source term, the updates that were equivalent by virtue of commutation are no longer
equivalent, since the source is added between the two commuting terms. Hence, there are four distinct second-order updates
when current is present, rather than two, plus four more that can be obtained by duality.

In the Yee algorithm, divergence preservation comes from the fact that, as in the vector identity, r�r�A = 0, the numer-
ical curl operator, (P + M), is in the null-space of the numerical divergence, which we denote here byrFD�, and note that this
provides the separate curls on the E and cB parts of the field. Thus, for any field array, X
rFD � ðPþMÞ � X ¼ 0; ð22Þ
We now analyze the divergence preservation properties of Eq. (21d), UDP, on a field VDP, for which purpose we rewrite as
1� Dt
2

P
� �

� 1þ Dt
2

M
� ��1

� Vnþ1
DP ¼ 1þ Dt

2
P

� �
� 1� Dt

2
M

� ��1

� Vn
DP þ DtSnþ1=2: ð23Þ
Divergence preservation follows from the following identities,
1� Dt
2

P
� �

� 1þ Dt
2

M
� ��1

¼ 1� Dt
2

P� Dt
2

Mþ Dt
2

M
� �

� 1þ Dt
2

M
� ��1

¼ 1� Dt
2
ðPþMÞ � 1þ Dt

2
M

� ��1

ð24Þ
and, similarly,
1þ Dt
2

P
� �

� 1� Dt
2

M
� ��1

¼ 1þ Dt
2

PþMð Þ � 1� Dt
2

M
� ��1

: ð25Þ
Plugging Eqs. (24) and (25) into Eq. (23), and collecting terms results in an analogue to Eq. (14), although it is not as imme-
diately recognizable as an ADI update,
Vnþ1
DP � Vn

DP ¼
Dt
2
ðMþ PÞ � 1þ Dt

2
M

� ��1

� Vnþ1
DP þ 1� Dt

2
M

� ��1

� Vn
DP

" #
þ DtSnþ1=2 ð26Þ
We take the divergence of both sides of Eq. (26), and note from Eq. (22) that the divergence, rFD�, operating on (M + P) van-
ishes, thus yielding,
rFD � Vnþ1
DP �rFD � Vn

DP ¼ rFD � DtSnþ1=2; ð27Þ
which is precisely the divergence preservation property, including source current. Since there are no magnetic currents, this
result guarantees that the numerical divergence of the magnetic field always vanishes if it did so initially. Similarly, it implies
that, provided the current and charge density satisfy the numerical continuity equation, the numerical divergence of the
electric field will always equal the charge density if it did so originally. That is,
rFDE � Enþ1
DP �rFDE � En

DP ¼ �rFDE � Dtjnþ1=2
=e0 ¼ ðqnþ1 � qnÞ=e0: ð28Þ
whererFDE� is the part of the divergence matrix associated with the electric field. The above manipulations relied on the fact
that the first applied operator was an inverse, e.g., implicit, while the second was explicit, so that one has the identity plus a
term whose left-most term is precisely the curl operator. Remarkably, of all the updates in (21), only UDP, (21d) has this form.
Hence, none of the other updates will preserve divergence (though the dual obtained by interchanging P and M will have the
same divergence preservation). All four updates have been implemented in numerical software to confirm this unique diver-
gence preserving property, and also to verify the lack of divergence preservation in the other three updates. This will be dis-
cussed in further detail in Section 5.

In the absence of current sources, similarity transformations by the matrix R related these update operators, 1 M 2 and
GSS M DP. Thus, we expect that these pairs will have similar stability properties in the presence of currents and charges. In
particular, while the electric and magnetic fields for the update UGSS are not updated in a divergence preserving way, they are
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related by a transformation to electric and magnetic fields that are updated in a divergence preserving way, e.g., to the elec-
tric and magnetic fields for the UDP update. More precisely, the DP and GSS solutions are related by
Fig. 1.
unphys
Vn
DP ¼ R � Vn

GSS: ð29Þ
Now, since the VDP solution is divergence preserving, it implies that the GSS update preserves not divergence of the field, but
rather divergence of the field multiplied by the R matrix, e.g., denotingrFDE� and RE to be those parts of the divergence and R
matrices associated with the electric field, we have,
rFDE � RE � Enþ1
GSS �rFD � RE � En

GSS ¼ �rFD � Dtjnþ1=2
=e0 ¼ ðqnþ1 � qnÞ=e0; ð30Þ
This operator, rFDE�RE�, has a larger stencil than the rFDE�. Also, as the spectral representation of the R matrix, Eq. (18), en-
hances larger wavenumbers, it acts as an anti-smoothing operator. In addition, as this operation,rFDE�RE�EGSS, resembles the
use of non-trivial dielectric, e, in Gauss’s Law, r�e�E, it is natural to think of the R matrix as an additional numerical permit-
tivity/permeability associated with the ADI finite-differencing algorithm, especially if one recalls that R departs from the
identity in proportion to worsening resolution of the field variations, and that R is an indicator of the choice of ADI duality.
Further exploration of the role of the R matrix is provided in Sections 6 and 7.

5. Numerical results for beam propagation

To determine the effect of divergence preservation we developed prototype implementations within the VORPAL [11]
computational framework, which can be used for EMPIC. We chose parameters to match the previous [9] numerical results.
Namely, our simulations were 2D inside a box, 1 m on a side and with 20 � 20 cells. The simulation was initialized to have no
particles or fields, but then 5 A of 30 keV electrons were injected from the middle third of the left wall. The time step was
chosen to be the Courant value, and all four algorithms in (21) were tested. The simulations were run for 80,000 time steps,
which is slightly over 900 times of transit of the beam across the system.

Fig. 1 shows the results for the x � y scatter plot of the beam after 725 transit times using the ADI-update operator, U1,
based upon [1], with currents added in the center. One can see that the beam is developing an unphysical divergence, much
like that seen in [9], when a non-charge conserving current deposition algorithm was used. While this is for one instant in
time, further integration shows that the situation gets worse. It is accompanied by a growth in the divergence error,
rFD�E � q/e0, which vanishes initially, but by this time in the simulation has grown to peak values of 3 � 106 V/m2. By com-
parison, the charge density for the beam is about 7.5 � 10�8 C/m3, or q/e0 � 8.5 kV/m2. Thus the error in the divergence, by
this time, is orders of magnitude greater than the actual beam charge density.

In contrast, Fig. 2 shows the results for the x � y scatter plot of the beam after 725 transit times using the newly intro-
duced divergence preserving ADI-update operator, UDP. There is no sign of beam divergence developing, as expected. The
behavior is reminiscent of the standard Yee update with charge conserving current deposition that was shown in [9]. For
this case, the divergence error is around 3 � 10�9 V/m2, or around round-off error when compared with q/e0 � 8.5 kV/m2.

As noted earlier, the field solutions from update operators U1 and U2 are related by simple transformation. Hence they are
expected to have identical stability properties in the presence of particles. Indeed, simulations show this to be the case. Use
of the operator U2 also leads to unphysical beam divergence after a few hundred transit times.

Similarly, the field solution using UGSS is stable, as it is related to field solution of UDP by a simple transformation, and
simulations using UGSS are seen to have the same basic properties as those using UDP, i.e., no nonphysical beam divergence.
Configuration-space scatter plot of a beam after 575 transit times for the update operator U1. Artificial charge build-up on the grid causes an
ical beam divergence instability.



Fig. 2. Beam after 775 transit times using the charge conserving update, UDP. Divergence error is zero to machine precision, and so beam transport is stable.
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For these simulations using UGSS, we observe a divergence error that is on the order of 300 V/m2, which is less than, but not
negligible, compared with the beam value of q/e0 � 8.5 kV/m2. So even though the usual divergence is not preserved by the
operator, UGSS, the fact that a related divergence quantity is preserved appears to be enough to assure stability.
6. Steady-state solutions

Because the update UDP preserves the divergence, we are guaranteed that a solution using this operator always has
rFD �B = 0 and rFD�E = q/e0, in exact analogy with the continuous-field representation of Maxwell’s equations. However,
the traditional Yee-cell finite-difference electromagnetics has the further property of steady-state solutions satisfying
rFD�E = 0 and rFD�B = l0j, also in analogy with the Maxwell’s equations. Here we investigate the steady-state solutions
for some of the previously defined ADI updates.

We are particularly interested in the steady-state solution of the divergence preserving update, Eq. (26). Setting
Vnþ1

DP ;Vn
DP ! VDP in this equation, and noting that
1þ Dt
2

M
� ��1

� Vnþ1
DP þ 1� Dt

2
M

� ��1

� Vn
DP ! 1þ Dt

2
M

� ��1

þ 1� Dt
2

M
� ��1

" #
� VDP ¼ 2R�1 � VDP ð31Þ
we can write the steady-state solution of the divergence preserving update in the form,
�ðPþMÞ � R�1 � VDP ¼ S; ð32aÞ
Noting the previously established relationship between VDP and VGSS, Eq. (29), it follows immediately that
�ðPþMÞ � VGSS ¼ S; ð32bÞ
which is the analogue to the continuous-field Maxwell equations in steady-state. Thus, the fields found from using UDP do
not satisfy the normal steady-state equations, rather they are related by the R matrix to the fields, VGSS, that do. Because the
R matrix enhances shorter wavelengths, this ADI solution will have shorter wavelengths enhanced. To summarize, the GSS
solution has analogous Maxwell steady-state behavior, but it has divergence error. In contrast, the DP solution has no diver-
gence error, but it does not satisfy the usual finite-difference Maxwell equations in steady-state.

It should be noted that this study has investigated the ADI algorithms for Maxwell equations in vacuum. After demon-
strating the properties of the DP and GSS solutions, Eqs. (28) and (32b), we would be remiss not to point out the obvious
similarity between the vacuum ADI algorithm and the Maxwell equations in the presence of non-trivial materials. When
materials are present, the non-trivial dielectric creates a role separation between electric field, E, and electric displace-
ment, D = e�E, and similarly with B = l�H. In this role separation, it is the fields D and B which occur in the divergence
equations, and it is the fields E and H which are acted upon directly by the curl operator, and thus occur in the stea-
dy-state equations. The DP and GSS vacuum solutions have similar role separation, namely VDP occurs in the divergence
equation, and VGSS occurs in the steady-state equations, and furthermore, as already mentioned, the R matrix connects
VDP to VGSS exactly as e connects the D to E and l connects B to H. Thus, despite the fact that we are talking specifically
of vacuum field solutions, it is not a difficult observation to note that the DP solution behaves analogously to D and B in a
material, while the GSS solution behaves analogously to E and H in a material. Whether this observation is a useful artifice
remains to be seen. More to the point, we leave the investigation of the ADI algorithms in the presence of actual materials
for later study.
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7. Energy conservation

We consider only the GSS and DP updates, as those are the only cases that are stable in the presence of charged particles.
In [2] it is shown that TGSS has a positive energy quantity, which corresponds to
W � VGSS � R � VGSS ¼ VDP � R�1 � VDP ¼ VGSS � VDP; ð33Þ
where the 2nd and 3rd definitions follow from Eq. (29). This quantity is conserved, as is the case in that analysis, in the ab-
sence of charges and currents. The goal of this section is to determine how this quantity evolves in the presence of charges
and currents. We seek the change in the vacuum energy quantity (33), which can be written in the form,
DW ¼ Vnþ1
GSS � V

nþ1
DP � Vn

GSS � V
n
DP: ð34Þ
This quantity arises naturally if one multiplies each side of Eq. (26) by the term following the curl, noting that due to the anti-
symmetric property of the curl, that term vanishes, hence leaving just
Vnþ1
DP � Vn

DP

� 	
� 1þ Dt

2
M

� ��1

� Vnþ1
DP þ 1� Dt

2
M

� ��1

� Vn
DP

" #
¼ DtSnþ1=2 � 1þ Dt

2
M

� ��1

� Vnþ1
DP þ 1� Dt

2
M

� ��1

� Vn
DP

" #
:

ð35Þ
Substituting from Eq. (26) for the left values of VDP gives,
Vnþ1
GSS � Vn

GSS

� 	
� 1� Dt

2
M

� �
� Vnþ1

DP þ 1þ Dt
2

M
� �

� Vn
DP

� �
¼ DtSnþ1=2 � 1þ Dt

2
M

� ��1

� Vnþ1
DP þ 1� Dt

2
M

� ��1

� Vn
DP

" #
:

ð36Þ
Finally, we note that by virtue of the anti-symmetric property of the matrix M�R, the quantity
Vnþ1

GSS � Vn
GSS

� 	
�M � Vnþ1

DP � Vn
DP

� 	
is zero, leaving just,
DW ¼ Vnþ1
GSS � V

nþ1
DP � Vn

GSS � V
n
DP ¼ DtSnþ1=2 � 1þ Dt

2
M

� ��1

� Vnþ1
DP þ 1� Dt

2
M

� ��1

� Vn
DP

" #

¼ DtSnþ1=2 � 1� Dt
2

M
� �

� Vnþ1
GSS þ 1þ Dt

2
M

� �
� Vn

GSS

� �
: ð37Þ
Eq. (37) is similar to the expression for mechanical energy in the usual explicit finite-difference Maxwell equations, with the
novel feature being the presence of the factors that make up the R matrix. We see from Eq. (33) that since the R matrix acts
as an anti-smoothing operator, the GSS field must contain less short-wavelength field amplitude than the DP field. Similarly,
the ADI form of the mechanical energy is smoothed if expressed in terms of the DP fields, and anti-smoothed if expressed in
terms of the GSS fields. A full study of fluctuations in this system is a subject for future research. Here we note that if there is
a fixed amount of energy in each Fourier mode, as one might expect from equipartition, the electric and magnetic fluctua-
tions will be larger for the DP case, as the mode energy has a smaller factor in front of it.

8. Boundary conditions

Usage of these operators with boundary conditions is straightforward. Typically, two different types of boundary condi-
tions are used. Stair-step boundary conditions are those for which a whole cell is either included or excluded from the sim-
ulation region. Cut-cell boundary conditions [13,14], are those for which the magnetic update is modified through use of
Faraday’s law for the fraction of the face that is within the simulation region.

For stair-step boundary conditions, with a cell either entirely included or excluded from the simulation region, the bound-
ary ultimately consists of the faces of all included cells. Boundary conditions are applied by setting the values of the electric
field on all cell edges on the boundary. The magnetic update equations are then valid for all interior faces as well as those on
the boundary. The matrices P and M are then found by setting to zero any matrix elements operating on an electric field for
which the corresponding edge is exterior – e.g., not even on the boundary. These terms give the time derivatives of the mag-
netic field. For the complement, one can use the regular magnetic update everywhere, provided it is followed by setting the
values of the electric field on all boundary edges to the boundary values.

For the Dey–Mittra type cut-cell boundary conditions [13], which provide second-order accuracy in global quantities,
again the electric update is unchanged, except that the electric field for any edge wholly outside the simulation region is
not updated but remains at the boundary value. However, the magnetic updates are modified by changing the coefficient
of the electric fields in P and M by multiplying them by the relative length of the edge within the simulation region divided
by the area of the face of the magnetic field that is within the simulation region. For faces entirely outside the simulation
region, the corresponding elements of the P and M matrices can be set to zero.

The Dey–Mittra boundary conditions are known to lead to a reduction in the maximum stable time step, when traditional
leap-frog updating is used. The uniformly stable update algorithm [14] eliminates this reduction. We note here the



Fig. 3. Second-order convergence of the plasma frequency, shown by the variation of the error dx, with spatial and temporal resolution.
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important fact that use of the ADI methods, in lieu of leap-frog, also eliminates this time-step reduction, since the ADI meth-
ods are stable for arbitrary time step.

9. Convergence results for plasma oscillations

As noted in the introduction, an implicit electromagnetic update allows one to more rapidly model phenomena in cases
when light propagation is not important without making the full electrostatic approximation. As an example application, we
have used the above methods to model plasma oscillations on a fine grid, for which use of the explicit Yee update would
require use of a much smaller time step. Plasma oscillations provide a meaningful test of the algorithm, since charge sepa-
ration and continuity dominate the physical processes. For the plasma we use the fluid equations of Section 5.3 of [11]. These
give the source term Sn+1/2 of Eq. (26), which is then used to advance the electromagnetic field.

The domain was chosen to be periodic in both the x and y-directions, as then analytic results for the frequency (just the
plasma frequency) are known for small oscillations. The domain was chosen to have length L = 1 m in each direction. The
plasma frequency was chosen to be xp = 0.18pc/L = 1.7 � 108 s�1. With these choices of parameters, and a time step of
Dt ¼ 4=Nxp ¼ 5

ffiffiffi
2
p

Dx=c, where N is the number of cells in each direction, the system has a CFL number of Dt/DtCFL = 10. Thus,
the explicit electromagnetic update would be highly unstable if used for this case.

The simulated problem was that of a plasma oscillation, with initial perturbation given by a velocity field having initial
values, vx,i = akxxp/k2 and vy,i = akyxp/k2, where kx = ky = 2p/L ðand k2 ¼ k2

x þ k2
yÞ, are chosen to be the lowest modes that vary

in both spatial variables. The nonlinearity parameter a was set at 10�3 to be firmly in the linear regime. Simulations with
N = 20, 40, 80, 160 were carried out, and the frequency for each case was extracted from the electric field signal by looking
at zero crossings. The convergence of the error, dx, in the frequency, compared to the known analytic value, is expected to be
second-order, similar to leap-frog algorithms, for example. The results, shown in Fig. 3, demonstrate that the divergence pre-
serving ADI algorithm does indeed provide second-order error.

10. Summary and conclusions

An exhaustive study of ADI-update operators for electromagnetics in the presence of charges and currents has been com-
pleted, and all possible second-order ADI-update operators having time-centered current addition at only one place have
been identified. Of these only our newly introduced divergence preserving UDP update from (21d) and its dual (from inter-
changing P and M) are divergence preserving. We also demonstrated the curl-steady-state property of the ADI algorithm of
[2], generalizing it to include current, and resulting in the UGSS update from (21c), and demonstrate that a simple transfor-
mation connects the divergence preserving and curl-steady-state field solutions. Upon implementation in EMPIC software, it
was observed that only UDP and UGSS are suitable for use in particle simulations, as the others show long time divergence
error growth that leads to unphysical behavior.
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